大学院水産科学院修士課程

筆記試験【専門科目】 問題紙

令和7年8月19日(火)

解答上の注意

- 1. 試験開始の合図があるまで問題紙を開いてはいけない。
- 2. 自分が志望する「専攻名」「講座名」が、下欄に正しく表示されているか確認すること。
- 3. **解答用紙は、出題番号(=出題内容)ごとに1枚**である。4題を選 択解答することになるため**,解答用紙は合計4枚**になる。
- 4. **解答用紙には必ず、「受験番号」「科目記号」「出題番号・出題内容」を記入すること。**記入しなかった場合は無効となることもあるので注意すること。
- 5. 別紙の「選択した出題内容記入票」は、答案とともに回収するので、試験終了までに記入を終えること。
- 6. 問題紙によっては複数ページにわたるものがあるので注意すること。
- 7. 試験開始の合図があったらまず最初に、問題紙に落丁、印刷の不鮮明等がないか確かめること。
- ※ この問題紙は、試験終了後回収する。

専攻名: 海洋応用生命科学専攻

講座名: 增殖生物学講座

科目 記号	科目名	出題 番号	出題内容	備 考
G	増殖生物学	211	水族生理学	出題番号 211, 212, 221, 222, 231, 232 の計 6 題から, 4 題を選択解答
		212	水族生理学	
		221		
		222	水族繁殖学	
		231	水族生化学	
		232	水族生化学	

科目記号	科目名	
G	増殖生物学	

出題番号211, 212, 221, 222, 231, 232の計6題から, 4題を選択して解答しなさい。

解答用紙には、科目記号・科目名、出題番号を記入すること。

出題内容:水族生理学

出題番号 211

脊椎動物において幹細胞から筋細胞(筋線維)が分化する分子機構に関し、以下の問いに答えなさい。

(1) 幹細胞から筋細胞(筋線維)が分化する分子機構の概要を,以下の単語を用いて説明しなさい。単語を用いる順番は自由とし,同じ単語を何度用いてもよい。なお,用いた単語には下線を引くこと。(15点)

Myf5, Myogenin, MyoD, 自己複製能, 転写調節タンパク質, 収縮能, 運命の決定, 筋原線維, 成熟, 多核

(2) ヒト間葉系幹細胞を培養下で筋細胞に分化させる細胞培養系を確立した北海花子さんは、 ある水産物から抽出された因子 X をこの細胞培養系に加え、筋細胞分化を促進するかどう かを mRNA 発現量の変化から判定する実験を行いたいと考えている。判定に用いることが できる mRNA 名を一つ挙げなさい。また、そう考える理由を説明しなさい。(10点)

出題番号 212

海産無脊椎動物の光受容器は、大きく3つに分類される。以下の問いに答えなさい。

- (1) 節足動物の光受容器の名称を答えなさい。(5点)
- (2) 節足動物の光受容器の構造を以下の単語を用いて説明しなさい。単語を用いる順番は自由とする。また、同じ単語を何度用いても良い。なお、用いた単語には下線を引くこと。 (20点)

個眼, 視覚単位, 光受容器, 角膜, 光刺激, 光受容部, 視細胞, 小網膜, 視神経, 脳

出題内容:水族繁殖学

出題番号 221

以下の文章を読み、問いに答えなさい。

性ホルモンによる性的二型の発現は、脊椎動物で広く認められている現象であるが、(A) 性ホルモンによる影響は各分類網で異なっている。魚類における性分化と性ホルモンとの関係は、1950 年代以降の山本時男によるメダカへの性ホルモン投与実験によって理解が大きく進んだ。山本は、遺伝的な性が識別できる d-rR 系統のメダカを用い、遺伝的雄に(ア)を、遺伝的雌に(イ)を投与することにより完全な性転換が誘導されることを示した。このことから、山本は実質的な生殖腺性分化の誘導因子は性ホルモンであるとの説を提唱した。その後、2000 年代以降のナイルティラピアを用いた研究では、(ア)が卵巣分化誘導因子であることが(B)遺伝子発現変化の解析から改めて支持されたものの、(C)(イ)が精巣分化誘導因子であるという説は遺伝子発現変化の解析からは支持されなかった。山本による先駆的な魚類生殖腺性分化誘導仮説は、卵巣分化については数多くの魚種における研究から支持されているが、精巣分化については魚類全般における共通理解は得られておらず、今後のさらなる研究の進展が期待されている。

- (1)(ア)と(イ)に入る用語を答えなさい。(6点)
- (2) 下線部(A) に関して,有胎盤哺乳類およびヘビを除く爬虫類における性ホルモンによる性的二型の発現についてそれぞれ説明しなさい。(6点)
- (3)下線部(B)に関して,遺伝的雌ナイルティラピアの生殖腺における雌特異的遺伝子発現と, その卵巣分化誘導への関わりを説明しなさい。(6点)
- (4) 下線部(C) に関して、遺伝的雄ナイルティラピアにおいて(イ)が精巣分化誘導因子ではないと結論された根拠を、雄特異的遺伝子発現のパターンから説明しなさい。(7点)

出題番号 222

以下の文章を読み、問いに答えなさい。

魚類の(ア) 腺と(イ) 細胞群は、哺乳類の副腎に相同な組織である。(A)(ア) 腺は(ウ) 胚葉 由来の(エ) 産生細胞からなり、副腎皮質に相当する。一方、(B)(イ) 細胞群は副腎髄質に相当し、 (オ) 胚葉性で交感神経系に由来する。

- (1) (ア) ~ (オ) に入る用語を答えなさい。(10点)
- (2)下線部(A)に関して,産生される主要なホルモン名を答えなさい。(2点)
- (3)下線部(A)に関して、ここで産生されるホルモンの生体内におけるはたらきについて、特にストレス反応と海水適応時の生体内変化に焦点をあてて説明しなさい。(7点)
- (4) 下線部(B) に関して、産生される主要なホルモン名を答えなさい。(2点)
- (5) 下線部(B) に関して、ここで産生されるホルモンの生体内におけるはたらきについて、4 つの作用を答えなさい。(4点)

出題内容:水族生化学

出題番号 231

以下の英文を読み、下記の(1)~(5)の問いに答えなさい。

※問題本文は著作権法上の理由からこのホームページに掲載することはできませんので、下記の出典箇所を参照するか、水産学部・教務担当の窓口で閲覧してください。

出典: Mommsen, T. P. and Walsh, P. J. (1988) Vitellogenesis and oocyte assembly. Fish Physiology Vol. XIA, pp347-406 より一文改変して抜粋

- (1)下線部(A)と(B)の日本語の用語およびそれぞれで産生される,本文中で示されている 働きに関わる主要なホルモンを答えなさい。(4点)
- (2) 下線部 (C) の分子名とともに、それが働く機構について下記に指定する用語を全て用いて答えなさい。(6点)

指定用語:核,標的遺伝子,転写,二量体,ホルモン反応性エレメント

- (3) 下線部 (D) を和訳しなさい。(6点)
- (4) 下線部(E)と(F)をそれぞれ主成分とする広義の卵黄物質名を答えなさい。(4点)
- (5) 下線部 (G) について、何故そうであるのかの理由を本文中に示されている内容で説明しなさい。(5点)

出題番号 232

遺伝子組換え実験と生化学的解析に関する以下の文章を読んで、(1)~(4)の問いに答えなさい。

全身発現性状を持つプロモーターの下流に、ある蛋白質 A をコードする塩基配列を配置した外来 遺伝子 A を、メダカ受精胚のゲノム DNA へ顕微注入法により導入した。この受精胚を育成し、初世 代キメラ組換え親魚を選抜した。この選抜親魚個体を野生型個体と交配し、子孫世代を得た結果、 その一部に蛋白質 A を生産するヘテロ接合型組換え個体が確認できた。ここで、蛋白質 A は、野生 型メダカの蛋白質 B 分子内にある複数のグリシンを別のアミノ酸で置換した変異蛋白質であり、A と B を構成する総アミノ酸残基数は変わらない。この蛋白質 A および B を、それぞれ組換え個体および 野生型個体から精製し、生化学的解析に供した。

- (1) 本文中で作出したヘテロ接合型組換え個体と野生型個体を交配した場合,その子孫の遺伝子型の種類(野生型・ヘテロ接合型・ホモ接合型)とその出現比率はどの様になるか答えなさい。尚,挿入遺伝子の遺伝はメンデルの法則に従うとする。(4点)
- (2) 精製蛋白質 A を非変性条件下でゲル濾過カラムクロマトグラフィー, SDS 変性条件下で SDS ポリアクリルアミド電気泳動 (SDS-PAGE) に供し、分子量を査定した結果、ゲル濾 過カラムクロマトグラフィーでは10万であり、SDS-PAGE では還元・非還元の両条件下で2万5千であった。ゲル濾過カラムクロマトグラフィーと SDS-PAGE の原理とその相違 について、蛋白質試料を変性させる意義も含め300字程度で説明した上で、非変性条件における蛋白質 A のサブユニット構造について推定できることを100字以内で説明しなさい。(10点)
- (3) 精製蛋白質 B を上記と同一条件で SDS-PAGE に供したところ, B の分子量は A よりも小さく査定されたものの, B の一次構造(演繹アミノ酸配列)から算定される理論値と一致していた。この蛋白質 A と B の分子量の違いを生み出した要因について,本文中のアミノ酸の置換に注目して,2つの可能性を述べなさい。(6点)
- (4) 蛋白質 A および B を同一濃度に調整し、それぞれ光路長 1 cm、波長 2 8 0 nm における吸光値を測定したところ、A は B より高値であった。このことから、本文中でグリシンから置換したアミノ酸を推定し、吸光性が高い上位 2 種類を挙げ、これらのアミノ酸の側鎖に共通する構造的な特徴を述べなさい。また、光路長を半分の長さにすると、吸光値はどのように変化するか、根拠となる既知の法則名を挙げて述べなさい。(5 点)